Concentric muscle contractions before static stretching minimize, but do not remove, stretch-induced force deficits.

Kay AD, Blazevich AJ

Journal of applied physiology (Bethesda, Md. : 1985) Add to My Journals List

201003 108(3):637-45 Language: eng Country: United States Sport, Exercise and Life Sciences, The University of Northampton, Park Campus, Boughton Green Rd., Northampton, NN2 7AL United Kingdom. tony.kay@northampton.ac.uk The effects of concentric contractions and passive stretching on musculotendinous stiffness and muscle activity were studied in 18 healthy human volunteers. Passive and concentric plantar flexor joint moment data were recorded on an isokinetic dynamometer with simultaneous electromyogram (EMG) monitoring of the triceps surae, real-time motion analysis of the lower leg, and ultrasound imaging of the Achilles-medial gastrocnemius muscle-tendon junction. The subjects then performed six 8-s ramped maximal voluntary concentric contractions before repeating both the passive and concentric trials. Concentric moment was significantly reduced (6.6%; P < 0.01), which was accompanied by, and correlated with (r = 0.60-0.94; P < 0.05), significant reductions in peak triceps surae EMG amplitude (10.2%; P < 0.01). Achilles tendon stiffness was significantly reduced (11.7%; P < 0.01), but no change in gastrocnemius medialis muscle operating length was detected. The subjects then performed three 60-s static plantar flexor stretches before being retested 2 and 30 min poststretch. A further reduction in concentric joint moment (5.8%; P < 0.01) was detected poststretch at 90% of range of motion, with no decrease in muscle activity or Achilles tendon stiffness, but a significant increase in muscle operating length and decrease in tendon length was apparent at this range of motion (P < 0.05). Thirty minutes after stretching, muscle activity significantly recovered to pre-maximal voluntary concentric contractions levels, whereas concentric moment and Achilles tendon stiffness remained depressed. These data show that the performance of maximal concentric contractions can substantially reduce neuromuscular activity and muscle force, but this does not prevent a further stretch-induced loss in active plantar flexor joint moment. Importantly, the different temporal changes in EMG and concentric joint moment indicate that a muscle-based mechanism was likely responsible for the force losses poststretch. PMID: 20075259
BACKGROUND AND AIMS: Carotid sinus hypersensitivity (CSH) is a common cause of fainting and falls in the older adult population and is diagnosed by carotid sinus massage (CSM). Previous work has suggested that age-related stiffening of blood vessels reduces afferent input from the carotid sinus leading to central upregulation of the overall arterial baroreflex response. We examined the differences in arterial stiffness and baroreflex function in older adults at high cardiovascular risk (advanced age, Type 2 diabetes, hypertension and hyperlipidemia) with and without CSH.

METHODS: Forty-three older adults (mean age 71.4 +/- 0.7) with Type 2 diabetes, hyperlipidemia and hypertension were recruited. After resting supine for 45 minutes prior to the start of data collection, each subject had arterial stiffness measured by pulse wave velocity (PWV, Complior SD), followed by spontaneous baroreflex measures (Baroreflex sensitivity, BRS) and CSM. RESULTS: Of the 43 subjects tested, 10 subjects met the criteria for CSH (8 pure vasodepressor and 2 mixed CSH). CSH subjects had higher measures of arterial stiffness when compared to normal subjects for both radial PWV (11.5 +/- 0.6 vs 9.6 +/- 0.4 m/s, p=0.043) and femoral PWV (13.4 +/- 0.9 vs 11.0 +/- 0.5 m/s, p=0.036). The CSH group demonstrated significantly lower BRS as compared to the normal group (BRS, 6.73 +/- 0.58 vs 10.41 +/- 0.85 ms/mmHg, p=0.038). These results were unchanged when the analysis was repeated with only the VD subjects.

CONCLUSIONS: Older adults with CSH have higher arterial stiffness and reduced arterial baroreflex sensitivity. There was no evidence to support upregulation of the arterial baroreflex in patients with CSH. PMID: 20142630
Early versus late start of isokinetic hamstring-strengthening exercise after anterior cruciate ligament reconstruction with patellar tendon graft. Sekir U, Gur H, Akova B
The American journal of sports medicine
201003 38(3):492-500 Language: eng Country: United States Department of Sports Medicine, Medical School of Uludag University, 16059 Goukule, Bursa, Turkey.
ufuksek@gmail.com

BACKGROUND: Hamstring strengthening after anterior cruciate ligament reconstruction is a vital component of the rehabilitation program. PURPOSE: The objective of this trial was to investigate the effects of hamstring isokinetic training used in the early phase of the rehabilitation program on the stability, strength, symptoms, and functional outcomes of patients throughout 12 months after anterior cruciate ligament surgery. STUDY DESIGN: Randomized controlled clinical trial; Level of evidence, 2. METHODS: Forty-eight men underwent anterior cruciate ligament reconstruction with an ipsilateral bone-patellar tendon-bone autograft. The patients were randomly assigned to perform daily isokinetic hamstring exercises at postoperative 3 weeks (group I) or to perform daily isokinetic hamstring exercises at postoperative 9 weeks (group II). The patients were evaluated monthly for the first 4 months and at the 12th month for postoperative hamstring and quadriceps strength, as well as for knee function via the Cincinnati Knee Rating Scale and International Knee Documentation Committee form. RESULTS: Hamstring isometric strength at 30 degrees of knee flexion (at the first and second months) and concentric isokinetic strength (at 2, 3, 4, and 12 months) at the angular velocity of 60 deg/s were significantly (P <.05-.01) greater in group I compared with group II. Average scores of the Cincinnati Knee Rating Scale for symptoms were significantly (P <.05-.001) higher in group I compared with group II at all evaluation periods. Walking and stair-climbing scores at 1, 2, 3, and 4 months and squatting score at all evaluation periods were also better (P <.05-.01) in group I compared with group II. In addition, group I exhibited better (P <.01-.001) Lachman test results compared with group II for all postoperative evaluation periods. The International Knee Documentation Committee final rating scores were significantly (P <.01) greater at 2, 3, and 4 months in group I compared with group II. CONCLUSION: The results of this study suggest that hamstring as well as quadriceps strength can be increased via early hamstring strengthening after anterior cruciate ligament reconstruction with no negative impact on knee function. PMID: 20194956

European journal of applied physiology Add to My Journals List

201001 108(2):301-10 Language: eng Country: Germany Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA. The purpose of this study was to investigate the acute effects of passive stretching on the electromechanical delay (EMD), peak twitch force (PTF), rate of force development (RFD), and compound muscle action potential (M-wave) amplitude during evoked twitches of the plantar flexor muscles. 16 men (mean age +/- SD = 21.1 +/- 1.7 years; body mass = 75.9 +/- 11.4 kg; height = 176.5 +/- 8.6 cm) participated in this study. A single, square-wave, supramaximal transcutaneous electrical stimulus was delivered to the tibial nerve before and after passive stretching. The stretching protocol consisted of nine repetitions of passive assisted stretching designed to stretch the calf muscles. Each repetition was held for 135 s separated by 5-10 s of rest. Dependent-samples t tests (pre- vs. post-stretching) were used to analyze the EMD, PTF, RFD, and M-wave amplitude data. There were significant changes (P < or = 0.05) from pre- to post-stretching for EMD (mean +/- SE = 4.84 +/- 0.31 and 6.22 +/- 0.34 ms), PTF (17.2 +/- 1.3 and 15.6 +/- 1.5), and RFD (320.5 +/- 24.5 and 279.8 +/- 28.2), however, the M-wave amplitude did not change (P > 0.05). These findings suggested that passively stretching the calf muscles affected the mechanical aspects of force production from the onset of the electrically evoked twitch to the peak twitch force. These results may help to explain the mechanisms underlying the stretching-induced force deficit that have been reported as either "mechanical" or "electrical" in origin. PMID: 19784666
Effect of neck strength training on health-related quality of life in females with chronic neck pain: a randomized controlled 1-year follow-up study

Petri K Salo1,2, Arja H Häkkinen1,2, Hannu Kautiainen3,4 and Jari J Ylinen1

1 Department of Physical and Rehabilitation Medicine, Central Finland Health Care District, Keskussairaalanlait 19, FI-40620 Jyväskylä, Finland
2 Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
3 Unit of Family Practice, Central Hospital of Central Finland, Jyväskylä, Finland
4 ORTON Foundation, Helsinki, Finland

Abstract

Background
Chronic neck pain is a common condition associated not only with a decrease in neck muscle strength, but also with decrease in health-related quality of life (HRQoL). While neck strength training has been shown to be effective in improving neck muscle strength and reducing neck pain, HRQoL among patients with neck pain has been reported as an outcome in only two short-term exercise intervention studies. Thus, reports on the influence of a long-term neck strength training intervention on HRQoL among patients with chronic neck pain have been lacking. This study reports the effect of one-year neck strength training on HRQoL in females with chronic neck pain.

Methods
One hundred eighty female office workers, 25 to 53 years of age, with chronic neck pain were randomized to a strength training group (STG, n = 60), endurance training group (ETG, n = 60) or control group (CG, n = 60). The STG performed high-intensity isometric neck strengthening exercises with an elastic band while the ETG performed lighter dynamic neck muscle training. The CG received a single session of guidance on stretching exercises. HRQoL was assessed using the generic 15D questionnaire at baseline and after 12 months. Statistical comparisons among the groups were performed using bootstrap-type analysis of covariance (ANCOVA) with baseline values as covariates. Effect sizes were calculated using the Cohen method for paired samples.

Results
Training led to statistically significant improvement in the 15D total scores for both training groups, whereas no changes occurred for the control group (P = 0.012, between groups). The STG improved significantly in five of 15 dimensions, while the ETG improved significantly in two dimensions. Effect size (and 95% confidence intervals) for the 15D total score was 0.39 (0.13 to 0.72) for the STG, 0.37 (0.08 to 0.67) for the ETG, and -0.06 (-0.25 to 0.15) for the CG.

Conclusions
One year of either strength or endurance training seemed to moderately enhance the HRQoL. Neck and upper body training can be recommended to improve HRQoL of females with neck pain if they are motivated for long-term regular exercise.

Trial Registration
ClinicalTrials.gov NCT01057836

Background
Neck pain is one of the most common musculoskeletal disorders in Western societies [1-4]. Along with considerable costs for the individual and the society, neck pain is a frequent source of disability causing humane suffering and affecting the well-being of individuals. Just as health is a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity [5], the outcome measures of an intervention ought to be multidimensional and include the subjective experience of the patient. This can be achieved using a health-related quality of life (HRQoL) measurement tool [6].

Neck pain has been shown to be associated with a decrease in HRQoL in several studies [1,7-12]. While no gold standard exists for assessing HRQoL among patients with neck pain, several different measurement instruments have been used, such as the Short Form-36 Health Survey (SF-36) [13] or subscales of the SF-36, 15 Dimensional HRQoL instrument (15D) [6], EuroQoL Group - 5 dimensional instrument (EQ-5D) [14], and the Healthy Days Measures [15].
Since neck pain is associated with a decrease in neck muscle strength, [16-21] neck strength training has been one means in seeking cure for neck pain. In addition to gaining neck muscle strength, neck strength training has been shown to be effective in reducing neck pain and the disability associated with it [22-24]. In a recent best-evidence synthesis [25] and Cochrane review [26] it was concluded that interventions that involved exercise combined with manual therapy were more effective in treating patients with neck pain than were alternative strategies. Although strength training seems to be an efficient way of treating patients with neck pain, its effect on HRQoL has not been shown. The authors found only two studies where the influence of strength exercises on neck pain was assessed with HRQoL measurements [22,27]. In those short-term exercise studies no significant gains in HRQoL were observed [22,27]. Because short-term training has been shown to produce only temporary improvements in various outcome measures, intensive resistance training for at least one year is recommended to gain sustainable results [28]. Thus, the purpose of the present study was to evaluate whether 12 months of neck strength or endurance training could improve HRQoL in females with chronic neck pain. This study was a secondary analysis of the randomized, controlled study conducted by Ylinen et al. [23].

Methods

Subjects

Three hundred forty-seven female office workers from different workplaces in southern and eastern Finland were referred to the study through their occupational health care systems. Potential subjects were identified through the local offices of the Social Insurance Institution, which provides state-financed rehabilitation in Finland. A questionnaire was mailed to these prospective participants to confirm their status regarding the inclusion and exclusion criteria. At this stage 121 candidates were excluded because of not meeting the eligibility criteria. Finally a total of 180 females met the inclusion criteria and also entered the study. Inclusion criteria were: female, aged 25 to 53 years, office worker, permanently employed, motivated to continue working, motivated for rehabilitation, and constant or frequently occurring neck pain for more than 6 months. Exclusion criteria were severe disorders of the cervical spine, such as disk prolapse, spinal stenosis, postoperative conditions in the neck and shoulder areas, history of severe trauma, instability, spasmodic torticollis, frequent migraine, peripheral nerve entrapment, fibromyalgia, shoulder diseases (tendonitis, bursitis, capsulitis), inflammatory rheumatic diseases, severe psychiatric illness and other diseases that prevent physical loading, and pregnancy. A detailed flowchart depicting the step-by-step enrolment process was published in an earlier report [23]. The subjects were randomized into two training groups and into a control group. A randomization into three groups of ten persons was performed blind before inviting the subjects to the rehabilitation centre. After obtaining 30 subjects, 10 in each group, they were ranked by the neck and shoulder pain and disability index and divided into 10 blocks of three groups. From each block, one subject was randomized to one of the training groups or to the control group according to a computer generated list. This stratification was used to ensure that subjects with equal severity of neck symptoms were present in each group. The trial was conducted between February 2000 and March 2002.

All of the participants provided written informed consent before entering the study. The study design was approved by the ethics committee of the Punkaharju Rehabilitation Centre, Punkaharju, Finland.

Measurements

All measurements were performed blind by the same physical therapist at baseline and after the 12-month intervention period. HRQoL was measured using the generic self-administered questionnaire 15D, which includes the dimensions mobility, vision, hearing, breathing, sleeping, eating, speech, elimination, usual activities, mental function, discomfort and symptoms, depression, distress, vitality, and sexual activity [6]. Each dimension has five grades of severity. The 15D can be used both to obtain a profile across the 15 dimensions and a single index score ranging from 0 (being dead) to 1 (full health). The 15D has proven to be reliable and valid instrument for measuring HRQoL [6,29-31]. It has also been used to describe the impact of different chronic conditions on HRQoL, including neck problems [12].

A neck strength measurement system (Kuntoväline Ltd, Helsinki, Finland) was used to test the isometric neck muscle strength with patients seated in a standard position, and the methodology followed the same method used in the reliability study reported earlier [32].

Interventions

The subjects were randomized into three groups: a strength training group (STG, \(n = 60 \)), an endurance training group (ETG, \(n = 60 \)), and a control group (CG, \(n = 60 \)). Both of the training groups participated in a 12-day rehabilitation program in a rehabilitation centre; the program was then performed as a home training program for one year.

The STG used a rubber band to train the neck muscles in a single series of 15 repetitions, each repetition reaching resistance level of 80% of the patient’s maximum isometric strength as recorded at baseline. The patient sat in an upright position and the other end of the rubber band was attached to the patients head and the other end to a sturdy stand. The patient then bent from hips directly forwards, obliquely toward right and left and directly backwards. The erect posture of the spine was maintained throughout the exercise. The subject's ability to reach the 80% resistance level was checked with a handheld isometric strength testing device (Force-Five, Wagner Instruments, Greenwich, CT) attached to the rubber band, at the baseline and at 2- and 6-month follow-up visits for controlling the progress of the training. In addition, a single adjustable dumbbell was used to perform upper body exercises: dumbbell shrugs, presses, curls, bent-over rows, flies, and pullovers. For each exercise, one set of 15 repetitions at the highest load possible was performed. Training was progressive such that if a patient could do 20 or more repetitions, weight was added.

The ETG trained their neck muscles by lifting the head up from supine position in three sets of 20 repetitions. The patients used a pair of dumbbells each weighing 2 kg to perform three sets of 20 repetitions of the same upper body exercises the STG was performing. Both training groups exercised three times per week and also performed a single series of squats, sit-ups, and back extension exercises in addition to 20 minutes of stretching exercises for the muscles trained.
The CG received written information and a single guidance session concerning the same stretching exercises that the training groups were performing. In addition, all the three groups were encouraged to perform aerobic exercise three times a week for 30 minutes.

Compliance with the specific training programs was collected via a training diary throughout the 12-month intervention. The training diaries were checked at 2-, 6-, and 12-month visits for the two training groups and at 12-month for the control group.

Data analysis

The results are expressed as means and standard deviations (SD). Statistical comparisons between the groups in baseline characteristics were performed using analysis of variance. The differences between groups in 15D dimensions and total score were tested by using bootstrap techniques due to the skewed distributions. Bootstrapping is a re-sampling method, in which you make no assumptions on distribution [33]. A bootstrap-type analysis of variance was used to test differences at baseline. Changes between the groups were tested by bootstrap-type analysis of covariance (ANCOVA) with baseline values as covariates. Effect sizes were calculated using the Cohen method for paired samples [34]. An effect size of 0.20 was considered as small, 0.50 as medium, and 0.80 as large. Confidence intervals (95% CIs) for the effect sizes were obtained by bias-corrected bootstrapping (5,000 replications) [35]. Post hoc (observed) power calculation was done based on Monte Carlo simulation of ANOVA designs. The α-level was set at 0.05. All statistical analyses were performed using STATA (for Windows), version 10 (Stata Corp, College Station, TX, USA).

Results

The mean (SD) age of the patients was 46 (6) years and the mean duration of neck pain was 8 (6) years. The demographic and clinical characteristics of the study groups were similar at baseline (table 1).

One patient in the endurance training group was excluded after randomization because of diagnosed polymyalgia rheumatica. Another patient withdrew from the endurance training group because of personal reason and one patient withdrew from the control group due to pregnancy. There were no missing data in addition to the two drop-outs.

At 12 months, changes in the 15D total scores (P = 0.012; observed power 0.76, α = 0.05) and the dimension sleeping (P = 0.0019) between the groups were statistically significant (Additional file 1, Table S2). Statistically significant gains in the 15D total score were observed for both training groups, whereas no changes occurred for the CG. There were statistically significant gains in the dimensions sleeping, elimination, mental function, distress, and vitality in the STG and in the dimensions sleeping and vitality in the ETG. In the CG, statistically significant deterioration was observed in the dimension mental function.

Discussion

This study showed that twelve months of neck strength or endurance training significantly improved HRQoL compared to control group among females with chronic neck pain. Both training groups showed statistically significant improvements in the 15D total score. The STG improved significantly in five of 15 dimensions, whereas the ETG improved in two of 15 dimensions.

The effect sizes for the 15D and its subscales in the present study seem to be modest. Nevertheless, Dr. Sintonen the developer of the 15D has stated that a change of 0.02 to 0.03 is clinically relevant for people in the sense that they feel the difference [36]. Since the statistically significant improvements in 15D and its dimensions ranged from 0.024 to 0.059 in the STG and from 0.021 to 0.068 in the ETG, it can be suggested that these improvements were also clinically relevant. Especially so, as such improvement was not observed in the control group.
HRQoL measurements have seldom been reported as outcomes in exercise intervention studies exploring chronic neck pain. The SF-36 HRQoL measurement was applied in two short-term intervention studies. Bronfort et al. [22] compared the effects of spinal manipulation combined with neck exercises, rehabilitative neck exercises alone, and spinal manipulation alone on neck pain. After 11 weeks of intervention, minor improvements were observed among all groups in all outcome measures including SF-36, but they did not reach statistical significance. Helewa et al. [27] investigated the effects of therapeutic exercises and sleeping with neck support pillows in patients with neck pain. The patients were treated for 6 weeks and the primary assessment was performed at 12 weeks. No statistically significant differences in HRQoL were detected among the groups.

There are some differences between the studies of Bronfort et al. [22] and Helewa et al. [27] and the present study. The most conspicuous of these is the length of the intervention, which was 12 months in the present study and less than 3 months in the aforementioned studies. According to Ylinen [28], the length of the commitment to regular training is one of the key factors for lasting rehabilitation results for chronic neck pain. Only a few months of training have been shown to produce only temporary improvements in various outcome measures; thus, intensive resistance training for at least one year is recommended [28]. In the original study by Ylinen et al. [23] the 12 month training led to statistically significant pain reduction in the STG and ETG compared to the CG. While neck pain is shown to be associated with a decrease in HRQoL in earlier cross-sectional studies [1,7-12] the present reduction in pain may be one factor responsible for the significant enhancement in HRQoL in the STG and ETG compared to the CG. In addition to the long training period, compliance to the training method used was good. The training adherence (at least once a week) was 86% for the STG, 93% for the ETG, and 65% for the CG [37]. Time used to aerobic exercise did not differ between groups at baseline or at 12-months. Also, no other treatments were offered to the patients during the 12-month period and visits to a physician and use of therapies e.g. massage was decreased especially in the STG and ETG during the 12 month period. The use of other treatments is described in details in the original report by Ylinen et al. [23].

There seems to be also some limitations in the study. While there were differences in HRQoL at baseline among groups, regression to the mean might explain some of the changes at 12 months. For example mental function scores were significantly higher at baseline in the CG compared to STG and ETG, and deterioration of mental function in CG at 12 months might be hard to explain otherwise than by tendency of abnormal values to average towards the mean of the population. By including a group of healthy volunteers to explore how much the 15D values fluctuate during one year, the conclusions of the present study could have been strengthened. The study group was selected through a long selection procedure which is possible to have influenced leaving out the least motivated patients. This might explain the high compliance and good completion of questionnaires so that there was no missing data except the two cases that withdrew from the study. Results in other settings e.g. in outpatient clinics, might differ from the present findings. Thus further studies are needed in other settings and especially among men.

Conclusions

One year of either strength or endurance training seemed to moderately enhance the HRQoL of female patients with chronic neck pain. Neck and upper body training can be recommended to improve HRQoL of females with neck pain if they are motivated for long-term regular exercise.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

PS was involved in the statistical analysis and drafted the manuscript. AH participated in the statistical analysis and drafting of the manuscript. HK performed the statistical analysis and participated in drafting of the manuscript. JY was the principal investigators of the original study and prepared study design, data collection and participated in drafting of the manuscript. All authors read and approved the final manuscript.

References

Importance of the propulsive phase in strength assessment. Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ

International journal of sports medicine Add to My Journals List
This study analyzed the contribution of the propulsive and braking phases among different percentages of the one-repetition maximum (1RM) in the concentric bench press exercise. One hundred strength-trained men performed a test with increasing loads up to the 1RM for the individual determination of the load-power relationship. The relative load that maximized the mechanical power output (P(max)) was determined using three different parameters: mean concentric power (MP), mean power of the propulsive phase (MPP) and peak power (PP). The load at which the braking phase no longer existed was 76.1+/-7.4% 1RM. P(max) was dependent on the parameter used: MP (54.2%), MPP (36.5%) or PP (37.4%). No significant differences were found for loads between 40-65% 1RM (MP) or 20-55% 1RM (MPP and PP), nor between P(max) (% 1RM) when using MPP or PP. P(max) was independent of relative strength, although certain tendency towards slightly lower loads was detected for the strongest subjects. These results highlight the importance of considering the contribution of the propulsive and braking phases in isoinertial strength and power assessments. Referring the mean mechanical values to the propulsive phase avoids underestimating an individual's true neuromuscular potential when lifting light and medium loads. PMID: 20222005

One-year follow-up study of self-evaluated effects of voice massage, voice training, and voice hygiene lecture in female teachers. Leppänen K, Ilomäki I, Laukkanen AM
This study collected data on self-reported symptoms of vocal fatigue among Finnish female primary school teachers (n = 90) before and 6 months and 12 months after three types of interventions that aimed at improving vocal well-being at work. All subjects were given a voice hygiene lecture (3 hours), and, additionally, a randomly chosen group of 30 subjects was given voice massage treatment and another group voice training (5 x 1 hour sessions) over 2 months. The subjects answered a questionnaire over the Internet concerning symptoms of vocal fatigue. The sum score of symptoms decreased significantly in all three groups through the period of investigation. All three interventions improved the teachers' vocal well-being over the long term. PMID: 20350071